首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4596篇
  免费   623篇
  国内免费   1406篇
安全科学   1538篇
废物处理   37篇
环保管理   433篇
综合类   2653篇
基础理论   784篇
环境理论   1篇
污染及防治   204篇
评价与监测   312篇
社会与环境   139篇
灾害及防治   524篇
  2024年   29篇
  2023年   170篇
  2022年   278篇
  2021年   341篇
  2020年   317篇
  2019年   324篇
  2018年   248篇
  2017年   295篇
  2016年   321篇
  2015年   362篇
  2014年   333篇
  2013年   440篇
  2012年   442篇
  2011年   478篇
  2010年   310篇
  2009年   319篇
  2008年   218篇
  2007年   277篇
  2006年   292篇
  2005年   184篇
  2004年   116篇
  2003年   104篇
  2002年   88篇
  2001年   51篇
  2000年   57篇
  1999年   47篇
  1998年   33篇
  1997年   30篇
  1996年   24篇
  1995年   18篇
  1994年   20篇
  1993年   14篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有6625条查询结果,搜索用时 15 毫秒
91.
氧化性物质作为饮用水中一种特殊污染物已对人体健康产生了危害,如何有效地去除这些物质迫在眉睫。对水中氧化性物质的产生、危害及其处理技术进行总结,详述了物化处理和氢自养生物还原处理技术的原理、特点及国内外的研究进展。  相似文献   
92.
本文对西部某老工业区土壤中As、Pb、Cr、Cd、Hg、Zn的含量、空间分布状况展开了研究,并依据《污染场地风险评估技术导则》对该老工业区的健康风险进行了评价。研究结果表明,该老工业区土壤重金属污染严重,6种元素与陕西土壤背景值相比超标100%,表明其不适宜作为居住用地开发。健康风险评价结果显示,As、Pb、Cr、Cd元素的非致癌风险值分别为3.83、1.7、1.94、1.09,均超过非致癌风险可接受值1,表明该老工业区对人们存在非致癌健康风险;对于致癌风险,As、Cr、Cd元素的致癌风险值远大于致癌风险边界值,分别超过致癌风险值的2个数量级(2.64×10-4)、4个数量级(1.94×10-2)、1个数量级(6.12×10-5),表示As和Cr已经达到了显著致癌风险的水平。  相似文献   
93.
为保障水电厂安全运行,根据水电厂设备设施构成要素,系统分析其风险,建立涵盖水轮机及其辅助设备、发电机及其辅助设备、计算机监控系统及自动装置、电气一次设备、电气二次设备、水工建筑物及金属结构、机具与防护设施等因素在内的评价指标体系。采用欧氏距离定义样本差异,标准化处理属性特征值,通过聚类迭代,开发水电厂设备设施风险的动态分级方法。研究结果表明:水电厂设备设施故障风险在每年的第2,3季度明显大于第1,4季度,并且随着时间推移,各季度设备设施故障风险同比有增加的趋势,风险分级结果与设备设施故障的变化趋势基本吻合。  相似文献   
94.
为了实现重大危险源分级监管,基于风险管理理论,建立贮罐类重大危险源定性三维分级模型和风险定量分级模型。提出风险评价敏感性因素,选取可能性影响因素、严重性影响因素、敏感性影响因素3类风险评价指标。使用层次分析法(AHP)计算贮罐风险分级指标权重。根据风险可接受准则,将贮罐类重大危险源风险等级划分为4级,实现基于三维风险模型的贮罐类重大危险源快速分级。结果表明:用贮罐类重大危险源三维风险分级模型,通过简单数学模型计算贮罐风险值,能为企业提供风险分级标准,有助于实现政府对贮罐类重大危险源分级监管。  相似文献   
95.
为研究城市轨道交通网络化运营线路的风险传导规律和耦合关系,构建基于随机Petri网的同构马尔科夫链模型。通过模型分析突发事件应急响应模式中线路之间的相互影响,以及各线路启动突发事件应急响应模式对整个系统稳态的影响。结果表明,用该模型可从数学上研究城市轨道交通运营线路之间的传导规律和耦合关系,找出影响整个应急指挥系统效率的关键因素,最终提高地铁应对突发事件的能力。  相似文献   
96.
为了解河南省武陟县大田土壤重金属Cr、Cd、Pb、As、Cu、Se、Ni和Co的形态分布和生态风险情况,在该区域采集了12个表层土壤(0~20cm)样品,采用修正的BCR连续提取法进行形态分析,探讨其生物有效性,并采用Hakanson指数法评价了重金属的潜在生态风险.结果表明,土壤中不同重金属的形态分布差异很大,其中,Cr、As、Ni和Co均主要以残渣态存在,分别占其总量的66.6%、61.4%、50.7%和41.8%;Cu和Se主要以可氧化态存在,分别占其总量的43.8%和67.8%;Pb主要以可还原态存在,占总量的61.1%;Cd主要以酸提取态存在,占总量的53.3%.生物有效性分析表明,Cd的可利用态K1为0.933,生物有效性是最大的,对土壤生态系统的潜在危害性较大,其次是Pb和Co;Cu和Se在土壤环境发生变化时,很容易再次释放到外界环境中;Cr、As和Ni不易被外界生物利用.潜在生态风险评价结果显示,以国家土壤环境质量标准二级标准为参比值时,Cr、Cd、Pb、As、Cu和Ni的单项潜在生态风险程度均为轻微,综合潜在生态风险处于轻微等级.  相似文献   
97.
石油化工企业环境风险分级评价指标体系研究   总被引:3,自引:0,他引:3  
在现有研究基础上,从石化行业环境风险特点与现状着手,针对现有环境风险分级评价体系无法适应我国当前石化行业环境风险现状这一问题,对石化企业环境风险要素进行了梳理和分析.以此为基础从突发性环境风险、非突发性环境风险和选址敏感性三方面入手选取了石化企业环境风险分级评价指标,对各指标的含义及量化方法进行了分析,构建了石化企业环境风险分级评价指标体系.利用层次分析法确定体系指标权重,利用专家评分法对评价指标进行赋分,能够准确反映石化企业环境风险的实际情况.以天津滨海新区某石油化工企业为案例,验证了评价指标体系的有效性.  相似文献   
98.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   
99.
Objective: Injury risk curves estimate motor vehicle crash (MVC) occupant injury risk from vehicle, crash, and/or occupant factors. Many vehicles are equipped with event data recorders (EDRs) that collect data including the crash speed and restraint status during a MVC. This study's goal was to use regulation-required data elements for EDRs to compute occupant injury risk for (1) specific injuries and (2) specific body regions in frontal MVCs from weighted NASS-CDS data.

Methods: Logistic regression analysis of NASS-CDS single-impact frontal MVCs involving front seat occupants with frontal airbag deployment was used to produce 23 risk curves for specific injuries and 17 risk curves for Abbreviated Injury Scale (AIS) 2+ to 5+ body region injuries. Risk curves were produced for the following body regions: head and thorax (AIS 2+, 3+, 4+, 5+), face (AIS 2+), abdomen, spine, upper extremity, and lower extremity (AIS 2+, 3+). Injury risk with 95% confidence intervals was estimated for 15–105 km/h longitudinal delta-Vs and belt status was adjusted for as a covariate.

Results: Overall, belted occupants had lower estimated risks compared to unbelted occupants and the risk of injury increased as longitudinal delta-V increased. Belt status was a significant predictor for 13 specific injuries and all body region injuries with the exception of AIS 2+ and 3+ spine injuries. Specific injuries and body region injuries that occurred more frequently in NASS-CDS also tended to carry higher risks when evaluated at a 56 km/h longitudinal delta-V. In the belted population, injury risks that ranked in the top 33% included 4 upper extremity fractures (ulna, radius, clavicle, carpus/metacarpus), 2 lower extremity fractures (fibula, metatarsal/tarsal), and a knee sprain (2.4–4.6% risk). Unbelted injury risks ranked in the top 33% included 4 lower extremity fractures (femur, fibula, metatarsal/tarsal, patella), 2 head injuries with less than one hour or unspecified prior unconsciousness, and a lung contusion (4.6–9.9% risk). The 6 body region curves with the highest risks were for AIS 2+ lower extremity, upper extremity, thorax, and head injury and AIS 3+ lower extremity and thorax injury (15.9–43.8% risk).

Conclusions: These injury risk curves can be implemented into advanced automatic crash notification (AACN) algorithms that utilize vehicle EDR measurements to predict occupant injury immediately following a MVC. Through integration with AACN, these injury risk curves can provide emergency medical services (EMS) and other patient care providers with information on suspected occupant injuries to improve injury detection and patient triage.  相似文献   
100.
Objective: Derive lower leg injury risk functions using survival analysis and determine injury reference values (IRV) applicable to human mid-size male and small-size female anthropometries by conducting a meta-analysis of experimental data from different studies under axial impact loading to the foot–ankle–leg complex.

Methods: Specimen-specific dynamic peak force, age, total body mass, and injury data were obtained from tests conducted by applying the external load to the dorsal surface of the foot of postmortem human subject (PMHS) foot–ankle–leg preparations. Calcaneus and/or tibia injuries, alone or in combination and with/without involvement of adjacent articular complexes, were included in the injury group. Injury and noninjury tests were included. Maximum axial loads recorded by a load cell attached to the proximal end of the preparation were used. Data were analyzed by treating force as the primary variable. Age was considered as the covariate. Data were censored based on the number of tests conducted on each specimen and whether it remained intact or sustained injury; that is, right, left, and interval censoring. The best fits from different distributions were based on the Akaike information criterion; mean and plus and minus 95% confidence intervals were obtained; and normalized confidence interval sizes (quality indices) were determined at 5, 10, 25, and 50% risk levels. The normalization was based on the mean curve. Using human-equivalent age as 45 years, data were normalized and risk curves were developed for the 50th and 5th percentile human size of the dummies.

Results: Out of the available 114 tests (76 fracture and 38 no injury) from 5 groups of experiments, survival analysis was carried out using 3 groups consisting of 62 tests (35 fracture and 27 no injury). Peak forces associated with 4 specific risk levels at 25, 45, and 65 years of age are given along with probability curves (mean and plus and minus 95% confidence intervals) for PMHS and normalized data applicable to male and female dummies. Quality indices increased (less tightness-of-fit) with decreasing age and risk level for all age groups and these data are given for all chosen risk levels.

Conclusions: These PMHS-based probability distributions at different ages using information from different groups of researchers constituting the largest body of data can be used as human tolerances to lower leg injury from axial loading. Decreasing quality indices (increasing index value) at lower probabilities suggest the need for additional tests. The anthropometry-specific mid-size male and small-size female mean human risk curves along with plus and minus 95% confidence intervals from survival analysis and associated IRV data can be used as a first step in studies aimed at advancing occupant safety in automotive and other environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号